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SECTION 1

INTRODUCTION

This report presents scaled numerical solutions for the one dim-

ensional time-dependent SGEMP electron emission boundary layer problem in the

two cases in which the incident X-ray flux is either linearly rising in time

(a linear ramp) or is constant in time starting at t-O (a step function).

Two electron energy spectra are considered in each case, an exponential

spectrum, and a linear-times-exponential spectrum. The electrons are as-

sumed to be emitted with a cose angular distribution. The scaled solu-

tions given here provide the solutions to real problems with these energy

spectra for arbitrary X-ray flux rise rates (for the linear ramp) or arbi-

trary fluxes (for the step function).

Most X-ray pulses start off rising linearly in time. In many

cases, especially at high fluences or long rise times, much of the interest-

ing boundary layer dynamics is taking place while the pulse is still linearly

rising. Since a single solution suffices for all rise rates during this

portion of the pulse, it is worthwhile to present this solution.

In addition, if thv pulse rise time is very short compared to an

electron turnartu,ond • and compared to the subsequent time over which the

remainder of the pu kl var::.i; significantly, then the bounder- 2., il"A

behave approxi ;:ely as if the Y-ray pulse were a step function. We also
present the solu ýoni for this case.

The scaled e,, ,o, '.:oritrolling the boundary layer were pi,.-nted

in Referece 1. There it was tsow.. thlat iF A * ..ray pulse rises in time

1 Longmire, C. L., and N. J. Carron, Scaling of the Time-Dependent SGEMP

Boundary Layer, Mission Research Cerporation, MRC-R-262, DNA 3975T,
April 1976 (U). 3 .... ..... .
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like a power of time

F R tp (1)

where

0 S< p < ,(2) '

(2

F is the incident flux (cal/cm /sec), and R a constant, then the solu-
p

tion scales completely. For a given electron energy spectrum and given p,

a single solution suffices for all R . The solutions given here correspond

to p * 1 (R1  is the flux rise rate) and PNO (Ro is the constant flux).

The solution is a one-dimensional one and should be meaningful
out to distances small compared to the lateral dimensions of the target.

We give plots of electric field, potential, number density, and

current density as a function of position and time. These are presented
both as a function of x (distance from the target surface) for various

times, and as a function of time for various x. In addition the dipole

moment per unit area of the layer, and its first and second time derivatives
are given as a function of time. The spatial integral of the current density

is the same as the time derivative of the dipole moment.

The current densities given here may be useful as prescribed cur-
rents in Maxwell solving codes. The second time derivative of the dipole

moment may be useful for estimating dipole radiation. The dipole moment

may be useful for estimating distant quasi-static dipole fields.

4
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SECTION 2
COMPUTATION METHOD

The numerical solutions were obtained with the one dimensional

particle moving code SCAL1D. Time and length scales are determined by

the naturally occurring electron plasma properties. Times are measured
as multiples of an effective plasma period T given byP

Tu (3)
p J4,e 2N1

where m(e) is the electron mass (charge) and N1 is an average surface
number density, and lengths are measured as multiples of an effective plasma

Debye length

X vTp (4)

where 7 is the average normal velo ity of the emitted electrons. These

times and lengths are scaled out before beginning computation, so computed

times and lengths are on the order of unity. Similarly the dependent dy-
namical variables have a natural magnitude which is factored out.

If the pulse is linearly rising, N1  in Equation (3) is itself
time dependent, so that Equation (3) as it stands does not define a time
uuit. In the general case, Reference 1 shows that a plasma period can be

taken to be

2 Carron, N. J., Description of the Code SCAL1D for Calculating the One-
Dimensional SGEMP Boundary Layer, Mission Research Corporation, MRC-R-267,
May 1976 (U).
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Te2Y Rp] (5)

where Y is the material yield (elec/cal).

We assume the emitted electrons have a cosO angular distribu-

tion, where 0 is the polar angle measured from the normal. The shapes

of the two energy spectra we consider are shown in Figure 1. If the elec-

tron energy spectrum is exponential

I -en a (elec/key) (6)

where E is the electron energy and E is the exponentiation energy, then

the average normal velocity is

V 01 2W E 4- (7)

If the spectrum is linear-times-exponential

nE " "e (elec/keV) (8)

then

In the code we have chosen a very small time step, r 0.02 T . At
p

all interesting times there were several thousand particles in the first

few Debye lengths. The particles were given a finite length of 0.2 Debye

length for the purpose of computing the charge density and current density.

6
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JI
These quantities were further averaged over three spatial cells with a sim-

ple weighting scheme. The cell size was -.0.1 Debye length, and there were

always several hundred particles in each cell.

The current density J(x,t) was computed as the sum of particle

weights times their velocities, rather than as DE/at where E is the

electric field. At later times when J is small and due to approximately

equal numbers of particles with positive and negative velocities, irregu-

larities and oscillations occurred whose precise value was dependent on

the time step, emission particle weighting scheme, etc. In the plots pre-

sented here we show an average smooth dashed line through these unreliable

values. The plots of current density vs. time at various x were some-

times constructed from WE/ht when this method was more reliable.

tA
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SECTION 3

LINEARLY RISING PULSE, EXPONENTIAL SPECTRUM

In this section we present results for a linearly rising time

history (p.l) and for the exponential energy spectrum, Equation (6).

In the following equations we give dimensional units for the

dynamical variables. When numbers are given in the equations, we use these

units for E, Y, and Rl:

Electron exponentiation energy E (keY)

Yield Y (elec/cal)

X-ray rise rate R1 (cal/cm /sec2)

Equations (5) and (7) show the time unit to be

T~ rl~ ]1/3
Tp -6 e2 Y R1

0.7035 yR 1  sec (10)

and the unit of length, Equation (4), is

8 E___2_ 1/3

7.796 x 10 cm (11)
[ii

The units of electric field E) and potential (1) are taken to be

9
f-j 

1



m vm
E1 e T

P

[8.955 10 0 Y RI] 113  Volts/in (12)

SX E1 27r E
1 9 e

* 698 E Volts (13)

The units of number density (N and current density (J 1 are
y2 R2"1/3

N a Y 6.349 x 10-10 Y2R1 cm 3 (14)
1

1- e N1 v 1.126 x 10" 1 5 4= y 2 R2]1/ 3  Amps/r 2 . (15)

The units of dipole moment per unit area (P 1 ) and its time derivative!

(P1 ) are

P1 I e x2 N1 -
P1  1e N 8e

-9-
6.181 x 10 E CoulAn , (16)

1 L - 8.786 x 10 11/ Y RA1p3 (17)-1 T "1°91

Finally, the second time derivative of the dipole moment per unit area has

unit

"Pl= = 1,249E Y ]2/3 Amps/m/sec (18)
1 118 y R2

10
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For example, if E S5 keV, the material yield is Y -5 x 101 2

elec/cal, and the flux is rising at a rate R 1013 cal/cm /sec2, then

Tp - 2.50 ns

- 6.19 cm

E, 5.64 x 104 V/m

- 3.49 kV

7 -3N =5j.4 x 10 cm
V2 2J1 2.00 x 102 Amps/m2

P1 3 .09 x10" Coul/m

p = 12.38 Amps/m

P, 4.96 x Amps/m/sec

Figures 2 through 9 show the electric field, potential, number
density, and current density as a function of distance from the surface and
time, scaled to X and T ; and Figures 10 through 12 shcw the layer's

dipole moment per unit area and its first two time derivatives. The units
are those of Equations (10) through (18).

I.
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Figure 2. Electric field vs. x at various times.
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Figure 4. Number density vs. x at various times.
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Figure 5. Current density vs. x at various times
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Figure 6. Electric field vs. time at various x.
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Figure 7. Potential vs. time at various x.
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Figure 8. Number density vs. time at various x.
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Figure 9. Current density vs. time at various x.
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Figure 10. Dipole moment per unit area vs. time.
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Figure 11. Time derivative of dipole moment vs. time.
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Figure 12. Second time derivative of dipole moment vs. time.
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SECTION 4
LINEARLY RISING PULSE, LINEAR-TIMES-

EXPONENTIAL ENERGY SPECTRUM

This section presents results for a linearly rising time history
(pal) and for the linear-times-exponential energy spectrum, Equation (8).

1, Y, and R are in the same units as in the previous section (keV, cal"1

cal/cm2/sec2).

Equations (5) and (9) show the time unit to be

0 0.8053 sec • (19)

and the unit of length is

Trv -E2]1/ 3

P [16 e 2 m Y R"

1.339 x 109 r -g2 11/3 cm (20)

The units of electric field (El) and potential (01) are

E m E . [21T2 m-- Y R1/eE1 "~ e -Ep

I 1.173 x 10-' Y R1]1/3 Volts/m (21)

20



1 1 2.

* 1.571 x 103 Volts (22)

The units of number density (N1 ) and current density (J 1) are

Y R T
N1

1 /

Y R2 I/
4.845 x 10 cm 3  

D (23)

J1 1 N

• 1.290 x 10"15[4=- y 2 R.]1/3 Amps/n2 (24)

The units of dipole moment per unit area (P 1) and its time derivative

(P1 ) are

P a Xe 2 N1 .

-8 -• 1.391 x 10 E Coul/m (25)

S] - fj3 2cR]l/

Pl w 1.727 x 10-8 /2 YAmps/ (26)

The units of second time derivative of the dipole moment per unit area is
0

P 0 1 * 2.144 x 10-8 [l Y RI2/ Amps/m/sec . (27)

Figures 13 through 23 show the dynamical solutions for the case of a linearly

rising time history and a linear-times-exponential energy spectrum, using the

units of Equations (19) through (27).

21
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4 T- Eq. 19
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Figure 14. Potential vs. x at various times.
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Figure 15. Number density vs. x at various times.
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Figure 16. Current density vs. x at various times.
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Figure 17. Electric field vs. time at various x.
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Figure 19. Number density vs. time at various x.j
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Figure 20. Current density vs. time at vatious x.
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Figure 21. Dipole moment per unit area vs. time
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1.0 T p Eq. 19
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Figure 22. Time derivative of dipole moment vs. time.
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S Eq. 27
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0
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Figure 23. Second time derivative of dipole moment vs. time.
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SECTION 5
CONSTANT PULSE, EXPONENTIAL 'SPECTRUM

In this section we present results for a constant X-ray pulse

(p- 0 ) and for the exponential energy spectrum, Equation (6).

We give here the dimensional units for the dynamical variables.

When numbers are given we use these units for B, Y, and R0

Electron exponentiation energy B (keV)
Yield Y (elec/cal)

2X-ray flux R0 (cal/cm /sec)

Equations (5) and (7) show the time unit to be

11/2

0 .5901 [L /2•o sec (28)

I. El I** g3/2 11/26 'V" e2 YR 0

rE 1/

06.59 x 108 L3/o 1/ c (29)

- c
I Y RI

L 0 .

30
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The units of electric field (E1 ) and potential (0 are

Sm • [• 1/2
E T-' 1.068 • 10-' Y Ro V/m, C30)

1 eT0

SX E 2.t 698" Volts . (31)1 1 9 e

The units of number density (N1) and current density (J 1 ) are

Y Ro 10 Y Ro -3
NI -v 9.025 x 10" cm (32)

J a N v 1.602 x 10"15 Y R Amps/rm (33)

The units of dipole moment per unit area (P1 ) and its time derivative

(P1) are

12
PI XeX2 N 1 18-Is

- 6.181 x 10"9B Coul/m (34)

1 8r32 1/
P1 T Z 1.047 x 10" Y RJ Amps/mn (35)

The second time derivative of the dipole moment per unit area (Pl) has

unit

""P* Tp 1.775 x 10"-8 Y Ro Amps/m/sec (36)

p

31



Eor example if T u 5 keV, Y - 1013 elec/cal. and the flux is

R0 10 cal/chi /sac, then

Tp 0.88 ns

* 2.19 em

E 1.60 x 105 V/m

01 3.49 kV

N1 * 4.04 x 108 cm" 3

1 1.60 x 103 Amps/mr2

P1 " 3.09 x 108 Coul/m

P1*35.01 Amps/rn

l 3.97 x 1010 Amps/m/sec

Figures 24 through 34 give the dynamical solutions "'r the case
of a constant X-ray pulse starting at t=O and an exponential electron

energy spectrum. The units are those of Equations (28) through (36).

32
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Figure 24. Electric field vs. x at various times. *
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Figure 25. Potential vs. x at various times.

i34

.......



N - Eq. 32
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T - Eq. 28
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135

10- 4
0 5 10 15 20 25

Figure 26. Number density vs. x at various times.
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Figure 27. Current density vs. x at various times.
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Figure 28. Electric field vs. time at various x.
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Figure 30. Number density vs. time at various x.
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Figure 31. Current density vs. time at various x.
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Figure 32. Dipole moment per unit area vs. time.
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Figure 33. Time derivative of dipole moment vs. time.
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SFigure 34. Second time derivative of dipole moment vs. time.
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SECTION 6

CONSTANT PULSE, LINEAR-TIMES-EXPOMENTIAL

ENERGY SPECTRUM

Here we present results for the constant pulse (p-0) and linear-
times-exponential energy spectrum, Equation (8). L, Y, and R are in the

same units as the previous section (keV, cal"1, 6al/cm2 /sec).

Equations (5) and (9) show the time unit is

T m • •e2y Rv

0 .7227 Esec (37)

and the unit of length is

X " Tp - 1.201 x 1 [y RJ 1/ cm (38)
p0

The units of electric field (E1 ) and potential (0 are
[• 12V/m (9

E1  e T 1.308 x 10 4 [vEy R°]1/2(39)

1 1 2 e

- 1.571 x 103 Volts (40)

41



The units of number density (N1 ) and current density (J1) are

Y R Y R0I -.1 10"0 0 R°
N --- 16.06x10 cm 3  (41)

. e NI v 1.602 x 10" Y Ro Amps/- 2  (42)

The units of dipole moment por unit area (Pl) and its time derivative

(PI) are

l N

1 Se

* 1.391 x 10"8 Y Coul/M , (43)

T1 " a 1.924 x o8 [ Y R0] Amps/m (44)

Finally, the unit of the second time derivative of the dipole moment per

unit area is

"1 Y R Amps/m/sec (45)

Figures 3S through 45 give the dynamical solutions for the case

of a constant X-ray pulse starting at twO and a linear-times-exponential

energy spectrum. The units are those of Equations (37) through (45).

42
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Figure 35. Electric field vs. x at various times.
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Figure 36. Potential vs. x at various times.
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Figure 37. Number density vs. x at various times.
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Figure 41. Number density vs. time at various x.
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Figure 42. Current density vs. time at various x.
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Figure 43. Dipole moment per unit area vs. time.

49

i"I I



1.8

.2

0 2 4 6 8 10
t/TP
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Figure 45. Second time derivative of dipole moment vs. time,
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